home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Croteam texture file (image/croteamTextureFile)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX document text
| default
| |
99%
| file
| LaTeX document, ASCII text, with very long lines (832)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 66 |\documen|tstyle[f|
|00000010| 6c 65 71 6e 2c 65 70 73 | 66 2c 63 61 6c 63 5d 7b |leqn,eps|f,calc]{|
|00000020| 61 72 74 69 63 6c 65 7d | 0a 5c 6d 61 72 6b 72 69 |article}|.\markri|
|00000030| 67 68 74 7b 43 68 61 70 | 74 65 72 20 33 3a 20 57 |ght{Chap|ter 3: W|
|00000040| 6f 72 6b 73 68 65 65 74 | 20 31 30 7d 0a 5c 62 65 |orksheet| 10}.\be|
|00000050| 67 69 6e 7b 64 6f 63 75 | 6d 65 6e 74 7d 0a 0a 5c |gin{docu|ment}..\|
|00000060| 42 66 7b 43 68 61 70 74 | 65 72 20 33 3a 20 57 6f |Bf{Chapt|er 3: Wo|
|00000070| 72 6b 73 68 65 65 74 20 | 31 30 20 20 5c 68 66 69 |rksheet |10 \hfi|
|00000080| 6c 6c 20 4a 61 63 6b 20 | 4b 2e 20 43 6f 68 65 6e |ll Jack |K. Cohen|
|00000090| 20 5c 68 66 69 6c 6c 20 | 43 6f 6c 6f 72 61 64 6f | \hfill |Colorado|
|000000a0| 20 53 63 68 6f 6f 6c 20 | 6f 66 20 4d 69 6e 65 73 | School |of Mines|
|000000b0| 7d 0a 0a 5c 76 73 70 61 | 63 65 7b 31 2e 35 65 78 |}..\vspa|ce{1.5ex|
|000000c0| 7d 0a 5c 43 62 7b 4e 65 | 77 74 6f 6e 27 73 20 4d |}.\Cb{Ne|wton's M|
|000000d0| 65 74 68 6f 64 2c 20 45 | 71 75 61 74 69 6f 6e 20 |ethod, E|quation |
|000000e0| 53 6f 6c 76 69 6e 67 20 | 77 69 74 68 20 5c 4d 6d |Solving |with \Mm|
|000000f0| 61 7d 0a 5c 76 73 70 61 | 63 65 7b 31 2e 35 65 78 |a}.\vspa|ce{1.5ex|
|00000100| 7d 0a 0a 5c 6e 6f 69 6e | 64 65 6e 74 20 5c 42 66 |}..\noin|dent \Bf|
|00000110| 7b 53 75 67 67 65 73 74 | 65 64 20 50 72 6f 62 6c |{Suggest|ed Probl|
|00000120| 65 6d 73 7d 0a 53 65 63 | 74 69 6f 6e 20 33 2e 39 |ems}.Sec|tion 3.9|
|00000130| 3a 20 52 65 61 64 20 73 | 65 63 74 69 6f 6e 20 33 |: Read s|ection 3|
|00000140| 2e 39 2e 0a 0a 5c 76 73 | 70 61 63 65 7b 31 2e 35 |.9...\vs|pace{1.5|
|00000150| 65 78 7d 0a 0a 5c 62 65 | 67 69 6e 7b 65 6e 75 6d |ex}..\be|gin{enum|
|00000160| 65 72 61 74 65 7d 0a 5c | 69 74 65 6d 20 49 6c 6c |erate}.\|item Ill|
|00000170| 75 73 74 72 61 74 69 76 | 65 20 45 78 61 6d 70 6c |ustrativ|e Exampl|
|00000180| 65 20 32 20 28 74 68 65 | 20 60 60 63 6f 72 6b 20 |e 2 (the| ``cork |
|00000190| 62 61 6c 6c 20 70 72 6f | 62 6c 65 6d 27 27 29 20 |ball pro|blem'') |
|000001a0| 67 69 76 65 73 20 74 68 | 65 20 66 6f 72 6d 75 6c |gives th|e formul|
|000001b0| 61 20 66 6f 72 20 74 68 | 65 20 76 6f 6c 75 6d 65 |a for th|e volume|
|000001c0| 20 6f 66 20 61 20 73 65 | 67 6d 65 6e 74 20 6f 66 | of a se|gment of|
|000001d0| 20 68 65 69 67 68 74 20 | 24 78 24 20 61 6e 64 20 | height |$x$ and |
|000001e0| 72 61 64 69 75 73 20 24 | 72 24 20 6f 66 20 61 20 |radius $|r$ of a |
|000001f0| 73 70 68 65 72 65 20 77 | 68 6f 73 65 20 72 61 64 |sphere w|hose rad|
|00000200| 69 75 73 20 69 73 20 24 | 61 24 20 61 73 20 24 56 |ius is $|a$ as $V|
|00000210| 20 3d 20 24 20 7b 5c 4c | 61 72 67 65 20 24 5c 66 | = $ {\L|arge $\f|
|00000220| 72 61 63 7b 5c 70 69 20 | 78 7d 7b 36 7d 24 7d 20 |rac{\pi |x}{6}$} |
|00000230| 24 28 33 72 5e 32 20 2b | 20 78 5e 32 29 24 20 28 |$(3r^2 +| x^2)$ (|
|00000240| 73 65 65 20 46 69 67 75 | 72 65 20 31 29 2e 20 20 |see Figu|re 1). |
|00000250| 54 68 65 20 73 61 6d 65 | 20 76 6f 6c 75 6d 65 20 |The same| volume |
|00000260| 77 61 73 20 63 69 74 65 | 64 20 6f 6e 20 74 68 65 |was cite|d on the|
|00000270| 20 6c 61 73 74 20 77 6f | 72 6b 73 68 65 65 74 20 | last wo|rksheet |
|00000280| 61 73 20 24 56 20 3d 20 | 24 20 7b 5c 4c 61 72 67 |as $V = |$ {\Larg|
|00000290| 65 20 24 5c 66 72 61 63 | 7b 5c 70 69 20 78 5e 32 |e $\frac|{\pi x^2|
|000002a0| 7d 7b 33 7d 24 7d 20 24 | 28 33 61 20 2d 20 78 29 |}{3}$} $|(3a - x)|
|000002b0| 24 2e 0a 09 5c 62 65 67 | 69 6e 7b 66 69 67 75 72 |$...\beg|in{figur|
|000002c0| 65 7d 5b 68 74 62 5d 0a | 09 5c 65 70 73 66 79 73 |e}[htb].|.\epsfys|
|000002d0| 69 7a 65 20 31 31 30 70 | 74 0a 09 5c 63 65 6e 74 |ize 110p|t..\cent|
|000002e0| 65 72 6c 69 6e 65 7b 5c | 65 70 73 66 66 69 6c 65 |erline{\|epsffile|
|000002f0| 7b 77 73 31 30 70 31 2e | 65 70 73 7d 7d 0a 09 5c |{ws10p1.|eps}}..\|
|00000300| 63 61 70 74 69 6f 6e 7b | 53 6b 65 74 63 68 20 66 |caption{|Sketch f|
|00000310| 6f 72 20 50 72 6f 62 6c | 65 6d 20 31 7d 20 0a 09 |or Probl|em 1} ..|
|00000320| 5c 65 6e 64 7b 66 69 67 | 75 72 65 7d 0a 09 0a 09 |\end{fig|ure}....|
|00000330| 5c 62 65 67 69 6e 7b 65 | 6e 75 6d 65 72 61 74 65 |\begin{e|numerate|
|00000340| 7d 0a 09 5c 69 74 65 6d | 20 53 68 6f 77 20 74 68 |}..\item| Show th|
|00000350| 61 74 20 74 68 65 73 65 | 20 66 6f 72 6d 75 6c 61 |at these| formula|
|00000360| 73 20 61 72 65 20 65 71 | 75 69 76 61 6c 65 6e 74 |s are eq|uivalent|
|00000370| 2e 20 28 5c 53 63 7b 6e | 6f 74 65 3a 7d 20 54 68 |. (\Sc{n|ote:} Th|
|00000380| 65 20 71 75 61 6e 74 69 | 74 79 20 68 65 72 65 20 |e quanti|ty here |
|00000390| 64 65 6e 6f 74 65 64 20 | 62 79 20 24 78 24 20 69 |denoted |by $x$ i|
|000003a0| 73 20 61 6c 73 6f 20 64 | 65 6e 6f 74 65 64 20 62 |s also d|enoted b|
|000003b0| 79 20 24 79 24 20 61 6e | 64 20 24 68 24 20 69 6e |y $y$ an|d $h$ in|
|000003c0| 20 6f 74 68 65 72 20 70 | 72 6f 62 6c 65 6d 73 20 | other p|roblems |
|000003d0| 61 6e 64 20 65 78 61 6d | 70 6c 65 73 20 69 6e 20 |and exam|ples in |
|000003e0| 74 68 65 20 74 65 78 74 | 2e 29 0a 09 5c 69 74 65 |the text|.)..\ite|
|000003f0| 6d 20 53 75 70 70 6f 73 | 65 20 74 68 61 74 20 74 |m Suppos|e that t|
|00000400| 68 65 20 64 65 6e 73 69 | 74 79 20 6f 66 20 77 61 |he densi|ty of wa|
|00000410| 74 65 72 20 69 73 20 31 | 20 61 6e 64 20 74 68 65 |ter is 1| and the|
|00000420| 20 64 65 6e 73 69 74 79 | 20 6f 66 20 74 68 65 20 | density| of the |
|00000430| 62 61 6c 6c 20 69 73 20 | 24 5c 72 68 6f 24 2e 20 |ball is |$\rho$. |
|00000440| 41 70 70 65 61 6c 20 74 | 6f 20 41 72 63 68 69 6d |Appeal t|o Archim|
|00000450| 65 64 65 27 73 20 6c 61 | 77 20 74 6f 20 6f 62 74 |ede's la|w to obt|
|00000460| 61 69 6e 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e |ain the |equation|
|00000470| 20 24 5c 72 68 6f 20 56 | 5f 7b 5c 72 6d 20 73 70 | $\rho V|_{\rm sp|
|00000480| 68 65 72 65 7d 20 3d 20 | 56 5f 7b 5c 72 6d 20 73 |here} = |V_{\rm s|
|00000490| 65 67 6d 65 6e 74 7d 24 | 2e 20 20 20 55 73 69 6e |egment}$|. Usin|
|000004a0| 67 20 74 68 65 20 5c 45 | 6d 7b 73 65 63 6f 6e 64 |g the \E|m{second|
|000004b0| 7d 20 66 6f 72 6d 20 61 | 62 6f 76 65 20 66 6f 72 |} form a|bove for|
|000004c0| 20 74 68 65 20 76 6f 6c | 75 6d 65 20 6f 66 20 74 | the vol|ume of t|
|000004d0| 68 65 20 73 65 67 6d 65 | 6e 74 2c 20 6f 62 74 61 |he segme|nt, obta|
|000004e0| 69 6e 20 74 68 65 20 63 | 75 62 69 63 20 65 71 75 |in the c|ubic equ|
|000004f0| 61 74 69 6f 6e 20 24 34 | 20 5c 72 68 6f 20 61 5e |ation $4| \rho a^|
|00000500| 32 20 3d 20 33 20 61 20 | 78 5e 32 20 2d 20 78 5e |2 = 3 a |x^2 - x^|
|00000510| 33 24 2e 20 20 20 53 68 | 6f 77 20 74 68 61 74 20 |3$. Sh|ow that |
|00000520| 77 68 65 6e 2c 20 61 73 | 20 69 6e 20 74 68 65 20 |when, as| in the |
|00000530| 69 6c 6c 75 73 74 72 61 | 74 69 76 65 20 65 78 61 |illustra|tive exa|
|00000540| 6d 70 6c 65 2c 20 24 5c | 72 68 6f 20 3d 20 31 2f |mple, $\|rho = 1/|
|00000550| 34 24 20 61 6e 64 20 24 | 61 20 3d 20 31 24 2c 20 |4$ and $|a = 1$, |
|00000560| 77 65 20 6f 62 74 61 69 | 6e 20 74 68 65 20 65 71 |we obtai|n the eq|
|00000570| 75 61 74 69 6f 6e 20 24 | 33 78 5e 32 20 2d 20 78 |uation $|3x^2 - x|
|00000580| 5e 33 20 3d 20 31 24 20 | 69 6e 20 61 67 72 65 65 |^3 = 1$ |in agree|
|00000590| 6d 65 6e 74 20 77 69 74 | 68 20 74 68 65 20 74 65 |ment wit|h the te|
|000005a0| 78 74 2e 0a 09 5c 69 74 | 65 6d 20 55 73 65 20 74 |xt...\it|em Use t|
|000005b0| 68 65 20 49 6e 74 65 72 | 6d 65 64 69 61 74 65 20 |he Inter|mediate |
|000005c0| 56 61 6c 75 65 20 54 68 | 65 6f 72 65 6d 20 74 6f |Value Th|eorem to|
|000005d0| 20 70 72 6f 76 65 20 74 | 68 61 74 20 74 68 65 20 | prove t|hat the |
|000005e0| 65 78 70 6c 69 63 69 74 | 20 63 75 62 69 63 20 65 |explicit| cubic e|
|000005f0| 71 75 61 74 69 6f 6e 2c | 20 24 78 5e 33 20 2d 20 |quation,| $x^3 - |
|00000600| 33 78 5e 32 20 2b 20 31 | 20 3d 20 30 24 2c 20 6a |3x^2 + 1| = 0$, j|
|00000610| 75 73 74 20 64 65 72 69 | 76 65 64 20 68 61 73 20 |ust deri|ved has |
|00000620| 61 74 20 6c 65 61 73 74 | 20 6f 6e 65 20 72 6f 6f |at least| one roo|
|00000630| 74 20 69 6e 20 74 68 65 | 20 69 6e 74 65 72 76 61 |t in the| interva|
|00000640| 6c 20 24 5b 30 2c 20 31 | 5d 24 2e 0a 09 5c 65 6e |l $[0, 1|]$...\en|
|00000650| 64 7b 65 6e 75 6d 65 72 | 61 74 65 7d 0a 0a 5c 69 |d{enumer|ate}..\i|
|00000660| 74 65 6d 20 4f 6e 65 20 | 77 61 79 20 74 6f 20 73 |tem One |way to s|
|00000670| 6f 6c 76 65 20 65 71 75 | 61 74 69 6f 6e 73 20 77 |olve equ|ations w|
|00000680| 69 74 68 20 5c 4d 6d 61 | 5c 20 69 73 20 74 6f 20 |ith \Mma|\ is to |
|00000690| 63 6f 64 65 20 69 6e 20 | 79 6f 75 72 20 6f 77 6e |code in |your own|
|000006a0| 20 4e 65 77 74 6f 6e 27 | 73 20 6d 65 74 68 6f 64 | Newton'|s method|
|000006b0| 3a 0a 5c 62 65 67 69 6e | 7b 76 65 72 62 61 74 69 |:.\begin|{verbati|
|000006c0| 6d 7d 0a 66 5b 78 5f 5d | 20 3a 3d 20 78 5e 33 20 |m}.f[x_]| := x^3 |
|000006d0| 2d 20 33 78 5e 32 20 2b | 20 31 0a 78 20 3d 20 30 |- 3x^2 +| 1.x = 0|
|000006e0| 2e 35 0a 0a 78 20 3d 20 | 78 20 2d 20 66 5b 78 5d |.5..x = |x - f[x]|
|000006f0| 2f 66 27 5b 78 5d 0a 5c | 65 6e 64 7b 76 65 72 62 |/f'[x].\|end{verb|
|00000700| 61 74 69 6d 7d 0a 48 65 | 72 65 20 77 65 20 68 61 |atim}.He|re we ha|
|00000710| 76 65 20 64 65 66 69 6e | 65 64 20 74 68 65 20 60 |ve defin|ed the `|
|00000720| 60 63 6f 72 6b 20 62 61 | 6c 6c 27 27 20 20 66 75 |`cork ba|ll'' fu|
|00000730| 6e 63 74 69 6f 6e 20 69 | 6e 20 61 63 63 6f 72 64 |nction i|n accord|
|00000740| 61 6e 63 65 20 77 69 74 | 68 20 5c 4d 6d 61 5c 20 |ance wit|h \Mma\ |
|00000750| 73 79 6e 74 61 78 20 61 | 6e 64 20 64 65 66 69 6e |syntax a|nd defin|
|00000760| 65 64 20 61 20 73 74 61 | 72 74 69 6e 67 20 20 76 |ed a sta|rting v|
|00000770| 61 6c 75 65 20 61 74 20 | 74 68 65 20 6d 69 64 70 |alue at |the midp|
|00000780| 6f 69 6e 74 20 6f 66 20 | 61 6e 20 69 6e 74 65 72 |oint of |an inter|
|00000790| 76 61 6c 20 74 68 61 74 | 20 77 65 20 68 61 76 65 |val that| we have|
|000007a0| 20 70 72 6f 76 65 64 20 | 63 6f 6e 74 61 69 6e 73 | proved |contains|
|000007b0| 20 61 20 72 6f 6f 74 2e | 20 20 54 68 65 20 74 68 | a root.| The th|
|000007c0| 69 72 64 20 6c 69 6e 65 | 20 63 6f 6d 70 75 74 65 |ird line| compute|
|000007d0| 73 20 74 68 65 20 60 60 | 6e 65 77 27 27 20 20 76 |s the ``|new'' v|
|000007e0| 61 6c 75 65 20 6f 66 20 | 24 78 24 20 28 24 78 5f |alue of |$x$ ($x_|
|000007f0| 7b 6e 2b 31 7d 24 29 20 | 6f 6e 20 74 68 65 20 6c |{n+1}$) |on the l|
|00000800| 65 66 74 20 66 72 6f 6d | 20 74 68 65 20 60 60 6f |eft from| the ``o|
|00000810| 6c 64 27 27 20 76 61 6c | 75 65 20 28 24 78 5f 6e |ld'' val|ue ($x_n|
|00000820| 24 29 20 75 73 65 64 20 | 6f 6e 20 74 68 65 20 72 |$) used |on the r|
|00000830| 69 67 68 74 20 28 74 68 | 65 20 60 60 6f 6c 64 27 |ight (th|e ``old'|
|00000840| 27 20 76 61 6c 75 65 20 | 69 73 20 30 2e 35 20 74 |' value |is 0.5 t|
|00000850| 68 65 20 66 69 72 73 74 | 20 74 69 6d 65 20 77 65 |he first| time we|
|00000860| 20 64 6f 20 74 68 69 73 | 29 2e 20 20 57 65 20 63 | do this|). We c|
|00000870| 61 6e 20 74 68 65 6e 20 | 60 60 45 6e 74 65 72 27 |an then |``Enter'|
|00000880| 27 20 74 68 65 20 74 68 | 69 72 64 20 6c 69 6e 65 |' the th|ird line|
|00000890| 20 6f 76 65 72 20 61 6e | 64 20 6f 76 65 72 20 61 | over an|d over a|
|000008a0| 67 61 69 6e 20 74 6f 20 | 67 65 6e 65 72 61 74 65 |gain to |generate|
|000008b0| 20 61 20 73 65 71 75 65 | 6e 63 65 20 6f 66 20 61 | a seque|nce of a|
|000008c0| 70 70 72 6f 78 69 6d 61 | 74 69 6f 6e 73 2e 20 20 |pproxima|tions. |
|000008d0| 4f 6e 20 74 68 69 73 20 | 65 78 61 6d 70 6c 65 2c |On this |example,|
|000008e0| 20 79 6f 75 20 73 68 6f | 75 6c 64 20 67 65 74 20 | you sho|uld get |
|000008f0| 73 75 63 63 65 73 73 69 | 76 65 6c 79 3a 0a 5c 62 |successi|vely:.\b|
|00000900| 65 67 69 6e 7b 76 65 72 | 62 61 74 69 6d 7d 0a 30 |egin{ver|batim}.0|
|00000910| 2e 36 36 36 36 36 37 0a | 30 2e 36 35 32 37 37 38 |.666667.|0.652778|
|00000920| 0a 30 2e 36 35 32 37 30 | 34 0a 30 2e 36 35 32 37 |.0.65270|4.0.6527|
|00000930| 30 34 0a 30 2e 36 35 32 | 37 30 34 0a 5c 65 6e 64 |04.0.652|704.\end|
|00000940| 7b 76 65 72 62 61 74 69 | 6d 7d 0a 54 68 69 73 20 |{verbati|m}.This |
|00000950| 61 67 72 65 65 73 20 77 | 69 74 68 20 74 68 65 20 |agrees w|ith the |
|00000960| 76 61 6c 75 65 20 66 6f | 75 6e 64 20 69 6e 20 74 |value fo|und in t|
|00000970| 68 65 20 74 65 78 74 2e | 20 20 41 70 70 6c 79 20 |he text.| Apply |
|00000980| 74 68 69 73 20 61 70 70 | 72 6f 61 63 68 20 74 6f |this app|roach to|
|00000990| 20 74 68 65 20 66 6f 6c | 6c 6f 77 69 6e 67 20 70 | the fol|lowing p|
|000009a0| 72 6f 62 6c 65 6d 73 3a | 0a 09 5c 62 65 67 69 6e |roblems:|..\begin|
|000009b0| 7b 65 6e 75 6d 65 72 61 | 74 65 7d 0a 09 5c 69 74 |{enumera|te}..\it|
|000009c0| 65 6d 20 28 33 2e 39 2e | 31 29 20 24 78 5e 32 20 |em (3.9.|1) $x^2 |
|000009d0| 2d 20 35 20 3d 20 30 3b | 20 5c 71 75 61 64 20 20 |- 5 = 0;| \quad |
|000009e0| 78 5f 30 20 3d 20 32 2e | 35 24 20 28 69 2e 65 2e |x_0 = 2.|5$ (i.e.|
|000009f0| 20 66 69 6e 64 20 74 68 | 65 20 70 6f 73 69 74 69 | find th|e positi|
|00000a00| 76 65 20 73 71 75 61 72 | 65 20 72 6f 6f 74 20 6f |ve squar|e root o|
|00000a10| 66 20 35 29 0a 09 5c 69 | 74 65 6d 20 28 33 2e 39 |f 5)..\i|tem (3.9|
|00000a20| 2e 32 29 20 24 78 5e 33 | 20 2d 20 32 20 3d 20 30 |.2) $x^3| - 2 = 0|
|00000a30| 3b 20 5c 71 75 61 64 20 | 20 78 5f 30 20 3d 20 31 |; \quad | x_0 = 1|
|00000a40| 2e 35 24 20 28 69 2e 65 | 2e 20 66 69 6e 64 20 74 |.5$ (i.e|. find t|
|00000a50| 68 65 20 63 75 62 65 20 | 72 6f 6f 74 20 6f 66 20 |he cube |root of |
|00000a60| 32 29 0a 09 5c 65 6e 64 | 7b 65 6e 75 6d 65 72 61 |2)..\end|{enumera|
|00000a70| 74 65 7d 0a 0a 5c 69 74 | 65 6d 20 4f 6e 65 20 70 |te}..\it|em One p|
|00000a80| 72 6f 62 6c 65 6d 20 77 | 69 74 68 20 74 68 65 20 |roblem w|ith the |
|00000a90| 61 62 6f 76 65 20 6d 65 | 74 68 6f 64 20 69 73 20 |above me|thod is |
|00000aa0| 74 68 61 74 20 77 65 20 | 65 72 61 73 65 20 65 61 |that we |erase ea|
|00000ab0| 63 68 20 61 70 70 72 6f | 78 69 6d 61 74 69 6f 6e |ch appro|ximation|
|00000ac0| 20 69 6e 20 74 68 65 20 | 70 72 6f 63 65 73 73 20 | in the |process |
|00000ad0| 6f 66 20 70 72 6f 64 75 | 63 69 6e 67 20 74 68 65 |of produ|cing the|
|00000ae0| 20 6e 65 78 74 20 6f 6e | 65 2e 20 20 20 4f 6e 65 | next on|e. One|
|00000af0| 20 73 69 6d 70 6c 65 20 | 77 61 79 20 74 6f 20 61 | simple |way to a|
|00000b00| 76 6f 69 64 20 74 68 69 | 73 20 69 73 20 74 6f 20 |void thi|s is to |
|00000b10| 75 73 65 20 61 20 60 60 | 6c 6f 6f 70 27 27 3a 0a |use a ``|loop'':.|
|00000b20| 5c 62 65 67 69 6e 7b 76 | 65 72 62 61 74 69 6d 7d |\begin{v|erbatim}|
|00000b30| 0a 66 5b 78 5f 5d 20 3a | 3d 20 78 5e 33 20 2d 20 |.f[x_] :|= x^3 - |
|00000b40| 33 78 5e 32 20 2b 20 31 | 0a 78 20 3d 20 30 2e 35 |3x^2 + 1|.x = 0.5|
|00000b50| 3b 0a 44 6f 5b 0a 20 20 | 20 20 78 20 3d 20 78 20 |;.Do[. | x = x |
|00000b60| 2d 20 66 5b 78 5d 2f 66 | 27 5b 78 5d 3b 0a 20 20 |- f[x]/f|'[x];. |
|00000b70| 20 20 50 72 69 6e 74 5b | 78 5d 2c 0a 7b 38 7d 5d | Print[|x],.{8}]|
|00000b80| 0a 5c 65 6e 64 7b 76 65 | 72 62 61 74 69 6d 7d 0a |.\end{ve|rbatim}.|
|00000b90| 77 68 69 63 68 20 67 69 | 76 65 73 20 74 68 65 20 |which gi|ves the |
|00000ba0| 60 60 63 6f 72 6b 20 62 | 61 6c 6c 27 27 20 6f 75 |``cork b|all'' ou|
|00000bb0| 74 70 75 74 3a 0a 5c 62 | 65 67 69 6e 7b 76 65 72 |tput:.\b|egin{ver|
|00000bc0| 62 61 74 69 6d 7d 0a 30 | 2e 36 36 36 36 36 37 0a |batim}.0|.666667.|
|00000bd0| 30 2e 36 35 32 37 37 38 | 0a 30 2e 36 35 32 37 30 |0.652778|.0.65270|
|00000be0| 34 0a 30 2e 36 35 32 37 | 30 34 0a 30 2e 36 35 32 |4.0.6527|04.0.652|
|00000bf0| 37 30 34 0a 30 2e 36 35 | 32 37 30 34 0a 30 2e 36 |704.0.65|2704.0.6|
|00000c00| 35 32 37 30 34 0a 30 2e | 36 35 32 37 30 34 0a 5c |52704.0.|652704.\|
|00000c10| 65 6e 64 7b 76 65 72 62 | 61 74 69 6d 7d 0a 54 68 |end{verb|atim}.Th|
|00000c20| 65 20 60 60 38 27 27 20 | 74 68 61 74 20 61 70 70 |e ``8'' |that app|
|00000c30| 65 61 72 73 20 69 6e 20 | 63 75 72 6c 79 20 62 72 |ears in |curly br|
|00000c40| 61 63 6b 65 74 73 20 61 | 74 20 74 68 65 20 65 6e |ackets a|t the en|
|00000c50| 64 20 6f 66 20 60 60 44 | 6f 20 4c 6f 6f 70 27 27 |d of ``D|o Loop''|
|00000c60| 20 74 65 6c 6c 73 20 68 | 6f 77 20 6d 61 6e 79 20 | tells h|ow many |
|00000c70| 74 69 6d 65 73 20 74 6f | 20 69 74 65 72 61 74 65 |times to| iterate|
|00000c80| 2e 0a 0a 20 5c 42 66 7b | 49 6d 70 6f 72 74 61 6e |... \Bf{|Importan|
|00000c90| 74 20 61 6e 64 20 73 75 | 62 74 6c 65 20 70 6f 69 |t and su|btle poi|
|00000ca0| 6e 74 3a 7d 20 20 42 79 | 20 64 65 66 61 75 6c 74 |nt:} By| default|
|00000cb0| 2c 20 5c 4d 6d 61 5c 20 | 74 72 69 65 73 20 74 6f |, \Mma\ |tries to|
|00000cc0| 20 63 6f 6d 70 75 74 65 | 20 77 69 74 68 20 65 78 | compute| with ex|
|00000cd0| 61 63 74 20 61 72 69 74 | 68 6d 65 74 69 63 2e 20 |act arit|hmetic. |
|00000ce0| 20 54 68 69 73 20 63 61 | 6e 20 74 61 6b 65 20 61 | This ca|n take a|
|00000cf0| 20 6c 6f 6e 67 20 74 69 | 6d 65 2c 20 73 6f 20 69 | long ti|me, so i|
|00000d00| 74 20 69 73 20 75 73 75 | 61 6c 6c 79 20 62 65 73 |t is usu|ally bes|
|00000d10| 74 20 74 6f 20 69 6e 63 | 6c 75 64 65 20 61 20 64 |t to inc|lude a d|
|00000d20| 65 63 69 6d 61 6c 20 70 | 6f 69 6e 74 20 28 65 2e |ecimal p|oint (e.|
|00000d30| 67 2e 2c 20 30 2e 35 20 | 20 69 6e 73 74 65 61 64 |g., 0.5 | instead|
|00000d40| 20 6f 66 20 20 31 2f 32 | 29 20 69 6e 20 74 68 65 | of 1/2|) in the|
|00000d50| 20 73 74 61 72 74 69 6e | 67 20 76 61 6c 75 65 20 | startin|g value |
|00000d60| 74 6f 20 73 69 67 6e 61 | 6c 20 74 6f 20 5c 4d 6d |to signa|l to \Mm|
|00000d70| 61 5c 20 74 68 61 74 20 | 69 6e 66 69 6e 69 74 65 |a\ that |infinite|
|00000d80| 20 70 72 65 63 69 73 69 | 6f 6e 20 69 73 20 6e 6f | precisi|on is no|
|00000d90| 74 20 72 65 71 75 69 72 | 65 64 2e 0a 20 0a 20 53 |t requir|ed.. . S|
|00000da0| 69 6e 63 65 20 4e 65 77 | 74 6f 6e 27 73 20 6d 65 |ince New|ton's me|
|00000db0| 74 68 6f 64 20 6f 66 74 | 65 6e 20 63 6f 6e 76 65 |thod oft|en conve|
|00000dc0| 72 67 65 73 20 71 75 69 | 63 6b 6c 79 2c 20 6c 65 |rges qui|ckly, le|
|00000dd0| 74 27 73 20 70 72 69 6e | 74 20 74 68 65 20 72 65 |t's prin|t the re|
|00000de0| 73 75 6c 74 73 20 74 6f | 20 67 72 65 61 74 65 72 |sults to| greater|
|00000df0| 20 70 72 65 63 69 73 69 | 6f 6e 20 62 79 20 61 6c | precisi|on by al|
|00000e00| 74 65 72 69 6e 67 20 74 | 68 65 20 5c 54 74 7b 50 |tering t|he \Tt{P|
|00000e10| 72 69 6e 74 7d 20 73 74 | 61 74 65 6d 65 6e 74 3a |rint} st|atement:|
|00000e20| 0a 5c 62 65 67 69 6e 7b | 76 65 72 62 61 74 69 6d |.\begin{|verbatim|
|00000e30| 7d 0a 66 5b 78 5f 5d 20 | 3a 3d 20 78 5e 33 20 2d |}.f[x_] |:= x^3 -|
|00000e40| 20 33 78 5e 32 20 2b 20 | 31 0a 78 20 3d 20 30 2e | 3x^2 + |1.x = 0.|
|00000e50| 35 3b 0a 44 6f 5b 0a 09 | 78 20 3d 20 78 20 2d 20 |5;.Do[..|x = x - |
|00000e60| 66 5b 78 5d 2f 66 27 5b | 78 5d 3b 0a 09 50 72 69 |f[x]/f'[|x];..Pri|
|00000e70| 6e 74 5b 20 4e 5b 78 2c | 20 31 36 5d 20 5d 2c 0a |nt[ N[x,| 16] ],.|
|00000e80| 7b 38 7d 5d 0a 5c 65 6e | 64 7b 76 65 72 62 61 74 |{8}].\en|d{verbat|
|00000e90| 69 6d 7d 0a 5c 62 65 67 | 69 6e 7b 76 65 72 62 61 |im}.\beg|in{verba|
|00000ea0| 74 69 6d 7d 0a 30 2e 36 | 36 36 36 36 36 36 36 36 |tim}.0.6|66666666|
|00000eb0| 36 36 36 36 36 36 36 0a | 30 2e 36 35 32 37 37 37 |6666666.|0.652777|
|00000ec0| 37 37 37 37 37 37 37 37 | 37 38 0a 30 2e 36 35 32 |77777777|78.0.652|
|00000ed0| 37 30 33 36 34 36 38 33 | 36 31 33 32 31 0a 30 2e |70364683|61321.0.|
|00000ee0| 36 35 32 37 30 33 36 34 | 34 36 36 36 31 33 39 33 |65270364|46661393|
|00000ef0| 0a 30 2e 36 35 32 37 30 | 33 36 34 34 36 36 36 31 |.0.65270|36446661|
|00000f00| 33 39 33 0a 30 2e 36 35 | 32 37 30 33 36 34 34 36 |393.0.65|27036446|
|00000f10| 36 36 31 33 39 33 0a 30 | 2e 36 35 32 37 30 33 36 |661393.0|.6527036|
|00000f20| 34 34 36 36 36 31 33 39 | 33 0a 30 2e 36 35 32 37 |44666139|3.0.6527|
|00000f30| 30 33 36 34 34 36 36 36 | 31 33 39 33 0a 5c 65 6e |03644666|1393.\en|
|00000f40| 64 7b 76 65 72 62 61 74 | 69 6d 7d 0a 0a 41 70 70 |d{verbat|im}..App|
|00000f50| 6c 79 20 74 68 69 73 20 | 61 70 70 72 6f 61 63 68 |ly this |approach|
|00000f60| 20 74 6f 20 74 68 65 20 | 66 6f 6c 6c 6f 77 69 6e | to the |followin|
|00000f70| 67 20 70 72 6f 62 6c 65 | 6d 73 3a 0a 09 5c 62 65 |g proble|ms:..\be|
|00000f80| 67 69 6e 7b 65 6e 75 6d | 65 72 61 74 65 7d 0a 09 |gin{enum|erate}..|
|00000f90| 5c 69 74 65 6d 20 28 33 | 2e 39 2e 33 29 20 24 78 |\item (3|.9.3) $x|
|00000fa0| 5e 35 20 2d 20 31 30 30 | 20 3d 20 30 3b 20 5c 71 |^5 - 100| = 0; \q|
|00000fb0| 75 61 64 20 20 78 5f 30 | 20 3d 20 35 2e 30 24 20 |uad x_0| = 5.0$ |
|00000fc0| 28 69 2e 65 2e 20 66 69 | 6e 64 20 74 68 65 20 66 |(i.e. fi|nd the f|
|00000fd0| 69 66 74 68 20 72 6f 6f | 74 20 6f 66 20 31 30 30 |ifth roo|t of 100|
|00000fe0| 29 0a 09 5c 69 74 65 6d | 20 28 33 2e 39 2e 34 29 |)..\item| (3.9.4)|
|00000ff0| 20 24 78 5e 7b 33 2f 32 | 7d 20 2d 20 31 30 20 3d | $x^{3/2|} - 10 =|
|00001000| 20 30 3b 20 5c 71 75 61 | 64 20 20 78 5f 30 20 3d | 0; \qua|d x_0 =|
|00001010| 20 32 2e 30 24 20 28 69 | 2e 65 2e 20 63 6f 6d 70 | 2.0$ (i|.e. comp|
|00001020| 75 74 65 20 24 31 30 5e | 7b 32 2f 33 7d 24 29 0a |ute $10^|{2/3}$).|
|00001030| 09 5c 69 74 65 6d 20 24 | 78 5e 7b 31 2f 33 7d 20 |.\item $|x^{1/3} |
|00001040| 2d 20 31 3b 20 5c 71 75 | 61 64 20 78 5f 30 20 3d |- 1; \qu|ad x_0 =|
|00001050| 20 32 2e 30 24 20 28 69 | 2e 65 2e 20 63 6f 6d 70 | 2.0$ (i|.e. comp|
|00001060| 75 74 65 20 24 31 5e 33 | 24 20 74 68 65 20 68 61 |ute $1^3|$ the ha|
|00001070| 72 64 20 77 61 79 29 0a | 09 5c 69 74 65 6d 20 24 |rd way).|.\item $|
|00001080| 78 5e 7b 31 2f 33 7d 20 | 2d 20 31 3b 20 5c 71 75 |x^{1/3} |- 1; \qu|
|00001090| 61 64 20 78 5f 30 20 3d | 20 35 2e 30 24 0a 09 5c |ad x_0 =| 5.0$..\|
|000010a0| 69 74 65 6d 20 45 78 70 | 6c 61 69 6e 20 77 68 79 |item Exp|lain why|
|000010b0| 20 74 68 65 20 6f 75 74 | 70 75 74 20 69 6e 20 74 | the out|put in t|
|000010c0| 68 65 20 6c 61 73 74 20 | 74 77 6f 20 65 78 61 6d |he last |two exam|
|000010d0| 70 6c 65 73 20 64 69 66 | 66 65 72 2e 0a 09 5c 65 |ples dif|fer...\e|
|000010e0| 6e 64 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 0a 5c |nd{enume|rate}..\|
|000010f0| 69 74 65 6d 20 54 68 65 | 72 65 20 61 72 65 20 73 |item The|re are s|
|00001100| 65 76 65 72 61 6c 20 65 | 71 75 61 74 69 6f 6e 20 |everal e|quation |
|00001110| 73 6f 6c 76 65 72 73 20 | 64 69 72 65 63 74 6c 79 |solvers |directly|
|00001120| 20 62 75 69 6c 74 20 69 | 6e 20 74 6f 20 5c 4d 6d | built i|n to \Mm|
|00001130| 61 2d 2d 2d 62 65 20 61 | 77 61 72 65 20 74 68 61 |a---be a|ware tha|
|00001140| 74 20 4e 65 77 74 6f 6e | 27 73 20 6d 65 74 68 6f |t Newton|'s metho|
|00001150| 64 20 69 73 20 61 20 6b | 65 79 20 65 6c 65 6d 65 |d is a k|ey eleme|
|00001160| 6e 74 20 69 6e 20 74 68 | 65 69 72 20 63 6f 6e 73 |nt in th|eir cons|
|00001170| 74 72 75 63 74 69 6f 6e | 21 20 20 48 6f 77 65 76 |truction|! Howev|
|00001180| 65 72 2c 20 6f 74 68 65 | 72 20 63 6f 6e 73 69 64 |er, othe|r consid|
|00001190| 65 72 61 74 69 6f 6e 73 | 20 61 72 65 20 61 6c 73 |erations| are als|
|000011a0| 6f 20 6e 65 65 64 65 64 | 20 69 6e 20 73 75 63 68 |o needed| in such|
|000011b0| 20 70 72 6f 66 65 73 73 | 69 6f 6e 61 6c 20 70 61 | profess|ional pa|
|000011c0| 63 6b 61 67 65 73 20 74 | 6f 20 64 65 61 6c 20 77 |ckages t|o deal w|
|000011d0| 69 74 68 20 70 6f 74 65 | 6e 74 69 61 6c 20 60 60 |ith pote|ntial ``|
|000011e0| 64 69 76 65 72 67 65 6e | 74 27 27 20 62 65 68 61 |divergen|t'' beha|
|000011f0| 76 69 6f 72 20 61 73 20 | 6f 63 63 75 72 65 64 20 |vior as |occured |
|00001200| 69 6e 20 74 68 65 20 6c | 61 73 74 20 65 78 61 6d |in the l|ast exam|
|00001210| 70 6c 65 2e 20 20 20 50 | 6f 6c 79 6e 6f 6d 69 61 |ple. P|olynomia|
|00001220| 6c 20 65 71 75 61 74 69 | 6f 6e 73 20 61 72 65 20 |l equati|ons are |
|00001230| 6d 61 72 6b 65 64 6c 79 | 20 73 69 6d 70 6c 65 72 |markedly| simpler|
|00001240| 20 74 68 61 6e 20 74 68 | 65 20 67 65 6e 65 72 61 | than th|e genera|
|00001250| 6c 20 63 61 73 65 20 61 | 6e 64 20 5c 54 74 7b 53 |l case a|nd \Tt{S|
|00001260| 6f 6c 76 65 7d 20 61 6e | 64 20 5c 54 74 7b 4e 53 |olve} an|d \Tt{NS|
|00001270| 6f 6c 76 65 7d 20 64 65 | 61 6c 20 77 69 74 68 20 |olve} de|al with |
|00001280| 74 68 65 73 65 20 61 6e | 64 20 77 69 74 68 20 73 |these an|d with s|
|00001290| 6f 6d 65 20 65 71 75 61 | 74 69 6f 6e 73 20 74 68 |ome equa|tions th|
|000012a0| 61 74 20 63 61 6e 20 62 | 65 20 72 65 64 75 63 65 |at can b|e reduce|
|000012b0| 64 20 74 6f 20 70 6f 6c | 79 6e 6f 6d 69 61 6c 73 |d to pol|ynomials|
|000012c0| 20 62 79 20 61 6c 67 65 | 62 72 61 69 63 20 6d 61 | by alge|braic ma|
|000012d0| 6e 69 70 75 6c 61 74 69 | 6f 6e 73 20 28 65 2e 67 |nipulati|ons (e.g|
|000012e0| 2e 20 62 79 20 73 71 75 | 61 72 69 6e 67 29 2e 20 |. by squ|aring). |
|000012f0| 20 20 5c 54 74 7b 53 6f | 6c 76 65 7d 20 61 74 74 | \Tt{So|lve} att|
|00001300| 65 6d 70 74 73 20 74 6f | 20 67 69 76 65 20 65 78 |empts to| give ex|
|00001310| 61 63 74 20 73 6f 6c 75 | 74 69 6f 6e 73 2c 20 77 |act solu|tions, w|
|00001320| 68 69 6c 65 20 5c 54 74 | 7b 4e 53 6f 6c 76 65 7d |hile \Tt|{NSolve}|
|00001330| 20 67 69 76 65 73 20 6f | 6e 6c 79 20 6e 75 6d 65 | gives o|nly nume|
|00001340| 72 69 63 61 6c 20 73 6f | 6c 75 74 69 6f 6e 73 2e |rical so|lutions.|
|00001350| 20 20 41 73 20 69 6d 70 | 6c 69 65 64 2c 20 5c 54 | As imp|lied, \T|
|00001360| 74 7b 53 6f 6c 76 65 7d | 20 63 61 6e 6e 6f 74 20 |t{Solve}| cannot |
|00001370| 65 78 61 63 74 6c 79 20 | 73 6f 6c 76 65 20 61 6c |exactly |solve al|
|00001380| 6c 20 70 6f 6c 79 6e 6f | 6d 69 61 6c 20 65 71 75 |l polyno|mial equ|
|00001390| 61 74 69 6f 6e 73 20 28 | 74 68 65 72 65 20 69 73 |ations (|there is|
|000013a0| 20 6e 6f 20 6d 61 74 68 | 65 6d 61 74 69 63 61 6c | no math|ematical|
|000013b0| 20 6d 65 74 68 6f 64 20 | 74 6f 20 64 6f 20 74 68 | method |to do th|
|000013c0| 69 73 20 66 6f 72 20 65 | 71 75 61 74 69 6f 6e 73 |is for e|quations|
|000013d0| 20 6f 66 20 64 65 67 72 | 65 65 20 35 20 61 6e 64 | of degr|ee 5 and|
|000013e0| 20 68 69 67 68 65 72 29 | 2e 20 20 20 48 6f 77 65 | higher)|. Howe|
|000013f0| 76 65 72 2c 20 5c 54 74 | 7b 53 6f 6c 76 65 7d 20 |ver, \Tt|{Solve} |
|00001400| 63 61 6e 20 73 6f 6d 65 | 74 69 6d 65 73 20 68 61 |can some|times ha|
|00001410| 6e 64 6c 65 20 65 71 75 | 61 74 69 6f 6e 73 20 77 |ndle equ|ations w|
|00001420| 69 74 68 20 70 61 72 61 | 6d 65 74 65 72 73 2e 0a |ith para|meters..|
|00001430| 0a 46 69 72 73 74 20 61 | 20 63 75 62 69 63 20 77 |.First a| cubic w|
|00001440| 69 74 68 20 61 20 70 61 | 72 61 6d 65 74 65 72 2d |ith a pa|rameter-|
|00001450| 2d 2d 5c 54 74 7b 53 6f | 6c 76 65 7d 20 69 73 20 |--\Tt{So|lve} is |
|00001460| 6f 75 72 20 6f 6e 6c 79 | 20 63 68 61 6e 63 65 3a |our only| chance:|
|00001470| 0a 5c 62 65 67 69 6e 7b | 76 65 72 62 61 74 69 6d |.\begin{|verbatim|
|00001480| 7d 0a 65 71 75 61 74 69 | 6f 6e 20 3d 20 78 5e 33 |}.equati|on = x^3|
|00001490| 20 2d 20 32 61 20 78 5e | 32 20 2d 20 34 20 78 20 | - 2a x^|2 - 4 x |
|000014a0| 2b 20 38 61 20 3d 3d 20 | 30 3b 0a 73 6f 6c 75 74 |+ 8a == |0;.solut|
|000014b0| 69 6f 6e 73 20 3d 20 53 | 6f 6c 76 65 5b 65 71 75 |ions = S|olve[equ|
|000014c0| 61 74 69 6f 6e 2c 20 78 | 5d 0a 20 20 20 20 7b 7b |ation, x|]. {{|
|000014d0| 78 20 2d 3e 20 32 20 61 | 7d 2c 20 7b 78 20 2d 3e |x -> 2 a|}, {x ->|
|000014e0| 20 32 7d 2c 20 7b 78 20 | 2d 3e 20 2d 32 7d 7d 20 | 2}, {x |-> -2}} |
|000014f0| 28 2a 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 73 |(* the s|olutions|
|00001500| 20 77 72 69 74 74 65 6e | 20 61 73 20 72 75 6c 65 | written| as rule|
|00001510| 73 20 2a 29 0a 0a 65 71 | 75 61 74 69 6f 6e 20 2f |s *)..eq|uation /|
|00001520| 2e 20 73 6f 6c 75 74 69 | 6f 6e 73 20 20 20 20 20 |. soluti|ons |
|00001530| 28 2a 20 63 68 65 63 6b | 20 73 6f 6c 75 74 69 6f |(* check| solutio|
|00001540| 6e 73 20 62 79 20 73 75 | 62 73 74 69 74 75 74 69 |ns by su|bstituti|
|00001550| 6e 67 20 62 61 63 6b 20 | 2a 29 0a 20 20 20 7b 54 |ng back |*). {T|
|00001560| 72 75 65 2c 20 54 72 75 | 65 2c 20 54 72 75 65 7d |rue, Tru|e, True}|
|00001570| 20 20 20 20 28 2a 20 61 | 6c 6c 20 33 20 63 68 65 | (* a|ll 3 che|
|00001580| 63 6b 20 65 78 61 63 74 | 6c 79 20 2a 29 0a 5c 65 |ck exact|ly *).\e|
|00001590| 6e 64 7b 76 65 72 62 61 | 74 69 6d 7d 0a 5c 54 74 |nd{verba|tim}.\Tt|
|000015a0| 7b 53 6f 6c 76 65 7d 20 | 77 6f 72 6b 73 20 6f 6b |{Solve} |works ok|
|000015b0| 20 68 65 72 65 2c 20 62 | 65 63 61 75 73 65 20 74 | here, b|ecause t|
|000015c0| 68 65 20 65 71 75 61 74 | 69 6f 6e 20 77 61 73 20 |he equat|ion was |
|000015d0| 73 70 65 63 69 61 6c 20 | 28 61 6e 20 61 6e 73 77 |special |(an answ|
|000015e0| 65 72 20 74 68 61 74 20 | 69 73 20 31 37 20 70 61 |er that |is 17 pa|
|000015f0| 67 65 73 20 6c 6f 6e 67 | 20 69 73 6e 27 74 20 6f |ges long| isn't o|
|00001600| 66 20 6d 75 63 68 20 75 | 73 65 20 61 6e 64 20 74 |f much u|se and t|
|00001610| 68 61 74 20 63 61 6e 20 | 65 61 73 69 6c 79 20 68 |hat can |easily h|
|00001620| 61 70 70 65 6e 20 77 69 | 74 68 20 61 6e 20 61 72 |appen wi|th an ar|
|00001630| 62 69 74 72 61 72 79 20 | 63 75 62 69 63 29 2e 20 |bitrary |cubic). |
|00001640| 20 20 48 65 72 65 20 69 | 73 20 61 20 71 75 61 64 | Here i|s a quad|
|00001650| 72 61 74 69 63 20 66 6f | 72 20 77 68 69 63 68 20 |ratic fo|r which |
|00001660| 77 65 20 67 65 74 20 65 | 78 61 63 74 20 73 6f 6c |we get e|xact sol|
|00001670| 75 74 69 6f 6e 73 20 77 | 69 74 68 20 5c 54 74 7b |utions w|ith \Tt{|
|00001680| 53 6f 6c 76 65 7d 3a 0a | 5c 62 65 67 69 6e 7b 76 |Solve}:.|\begin{v|
|00001690| 65 72 62 61 74 69 6d 7d | 0a 65 71 75 61 74 69 6f |erbatim}|.equatio|
|000016a0| 6e 20 3d 20 78 5e 32 20 | 2d 20 33 78 20 2b 20 34 |n = x^2 |- 3x + 4|
|000016b0| 20 3d 3d 20 30 3b 0a 53 | 6f 6c 76 65 5b 65 71 75 | == 0;.S|olve[equ|
|000016c0| 61 74 69 6f 6e 2c 20 78 | 5d 0a 20 20 20 20 20 20 |ation, x|]. |
|000016d0| 20 20 20 20 20 33 20 2b | 20 49 20 53 71 72 74 5b | 3 +| I Sqrt[|
|000016e0| 37 5d 20 20 20 20 20 20 | 20 20 20 33 20 2d 20 49 |7] | 3 - I|
|000016f0| 20 53 71 72 74 5b 37 5d | 0a 20 20 20 20 7b 7b 78 | Sqrt[7]|. {{x|
|00001700| 20 2d 3e 20 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d | -> ----|--------|
|00001710| 2d 7d 2c 20 7b 78 20 2d | 3e 20 2d 2d 2d 2d 2d 2d |-}, {x -|> ------|
|00001720| 2d 2d 2d 2d 2d 2d 2d 7d | 7d 0a 20 20 20 20 20 20 |-------}|}. |
|00001730| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 20 20 | | 2 |
|00001740| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|00001750| 0a 5c 65 6e 64 7b 76 65 | 72 62 61 74 69 6d 7d 0a |.\end{ve|rbatim}.|
|00001760| 49 66 20 77 65 20 6f 6e | 6c 79 20 77 61 6e 74 20 |If we on|ly want |
|00001770| 6e 75 6d 65 72 69 63 61 | 6c 20 61 70 70 72 6f 78 |numerica|l approx|
|00001780| 69 6d 61 74 69 6f 6e 73 | 2c 20 69 74 20 69 73 20 |imations|, it is |
|00001790| 6d 6f 72 65 20 65 66 66 | 69 63 69 65 6e 74 20 74 |more eff|icient t|
|000017a0| 6f 20 75 73 65 20 5c 54 | 74 7b 4e 53 6f 6c 76 65 |o use \T|t{NSolve|
|000017b0| 7d 3a 0a 5c 62 65 67 69 | 6e 7b 76 65 72 62 61 74 |}:.\begi|n{verbat|
|000017c0| 69 6d 7d 0a 65 71 75 61 | 74 69 6f 6e 20 3d 20 78 |im}.equa|tion = x|
|000017d0| 5e 32 20 2d 20 33 78 20 | 2b 20 34 20 3d 3d 20 30 |^2 - 3x |+ 4 == 0|
|000017e0| 3b 0a 4e 53 6f 6c 76 65 | 5b 65 71 75 61 74 69 6f |;.NSolve|[equatio|
|000017f0| 6e 2c 20 78 5d 0a 20 20 | 20 20 7b 7b 78 20 2d 3e |n, x]. | {{x ->|
|00001800| 20 31 2e 35 20 2d 20 31 | 2e 33 32 32 38 37 35 36 | 1.5 - 1|.3228756|
|00001810| 35 35 35 33 32 33 20 49 | 7d 2c 20 0a 20 20 20 20 |555323 I|}, . |
|00001820| 20 20 7b 78 20 2d 3e 20 | 31 2e 35 20 2b 20 31 2e | {x -> |1.5 + 1.|
|00001830| 33 32 32 38 37 35 36 35 | 35 35 33 32 33 20 49 7d |32287565|55323 I}|
|00001840| 7d 0a 5c 65 6e 64 7b 76 | 65 72 62 61 74 69 6d 7d |}.\end{v|erbatim}|
|00001850| 0a 0a 55 73 65 20 5c 54 | 74 7b 4e 53 6f 6c 76 65 |..Use \T|t{NSolve|
|00001860| 7d 20 74 6f 20 67 65 74 | 20 61 6c 6c 20 74 68 72 |} to get| all thr|
|00001870| 65 65 20 72 6f 6f 74 73 | 20 6f 66 20 74 68 65 20 |ee roots| of the |
|00001880| 60 60 63 6f 72 6b 20 62 | 61 6c 6c 27 27 20 65 71 |``cork b|all'' eq|
|00001890| 75 61 74 69 6f 6e 2e 0a | 0a 5c 62 65 67 69 6e 7b |uation..|.\begin{|
|000018a0| 66 69 67 75 72 65 7d 5b | 68 74 62 5d 0a 5c 65 70 |figure}[|htb].\ep|
|000018b0| 73 66 79 73 69 7a 65 20 | 31 30 30 70 74 0a 5c 63 |sfysize |100pt.\c|
|000018c0| 65 6e 74 65 72 6c 69 6e | 65 7b 5c 65 70 73 66 66 |enterlin|e{\epsff|
|000018d0| 69 6c 65 7b 77 73 31 30 | 70 35 2e 65 70 73 7d 7d |ile{ws10|p5.eps}}|
|000018e0| 0a 5c 63 61 70 74 69 6f | 6e 7b 44 69 61 67 72 61 |.\captio|n{Diagra|
|000018f0| 6d 20 66 6f 72 20 50 72 | 6f 62 6c 65 6d 20 35 2e |m for Pr|oblem 5.|
|00001900| 7d 20 0a 5c 65 6e 64 7b | 66 69 67 75 72 65 7d 0a |} .\end{|figure}.|
|00001910| 0a 5c 69 74 65 6d 20 41 | 20 31 30 30 2d 66 74 20 |.\item A| 100-ft |
|00001920| 74 72 65 65 20 73 74 61 | 6e 64 73 20 32 30 20 66 |tree sta|nds 20 f|
|00001930| 65 65 74 20 66 72 6f 6d | 20 61 20 31 30 2d 66 74 |eet from| a 10-ft|
|00001940| 20 66 65 6e 63 65 2e 20 | 20 54 68 65 6e 20 74 68 | fence. | Then th|
|00001950| 65 20 74 72 65 65 20 69 | 73 20 60 60 62 72 6f 6b |e tree i|s ``brok|
|00001960| 65 6e 27 27 20 61 74 20 | 61 20 68 65 69 67 68 74 |en'' at |a height|
|00001970| 20 6f 66 20 78 20 66 65 | 65 74 2c 20 73 6f 20 74 | of x fe|et, so t|
|00001980| 68 61 74 20 69 74 20 6a | 75 73 74 20 67 72 61 7a |hat it j|ust graz|
|00001990| 65 73 20 74 68 65 20 74 | 6f 70 20 6f 66 20 74 68 |es the t|op of th|
|000019a0| 65 20 66 65 6e 63 65 20 | 61 6e 64 20 74 6f 75 63 |e fence |and touc|
|000019b0| 68 65 73 20 74 68 65 20 | 67 72 6f 75 6e 64 20 6f |hes the |ground o|
|000019c0| 6e 20 74 68 65 20 6f 74 | 68 65 72 20 73 69 64 65 |n the ot|her side|
|000019d0| 20 6f 66 20 74 68 65 20 | 66 65 6e 63 65 20 77 69 | of the |fence wi|
|000019e0| 74 68 20 69 74 73 20 74 | 69 70 20 28 73 65 65 20 |th its t|ip (see |
|000019f0| 46 69 67 75 72 65 20 35 | 29 2e 20 0a 09 5c 62 65 |Figure 5|). ..\be|
|00001a00| 67 69 6e 7b 65 6e 75 6d | 65 72 61 74 65 7d 0a 09 |gin{enum|erate}..|
|00001a10| 5c 69 74 65 6d 20 44 65 | 72 69 76 65 20 74 68 65 |\item De|rive the|
|00001a20| 20 65 71 75 61 74 69 6f | 6e 20 24 78 5e 33 20 2d | equatio|n $x^3 -|
|00001a30| 20 36 38 78 5e 32 20 2b | 20 31 31 30 30 78 20 2d | 68x^2 +| 1100x -|
|00001a40| 20 35 30 30 30 20 3d 20 | 30 24 20 66 6f 72 20 24 | 5000 = |0$ for $|
|00001a50| 78 24 2e 0a 09 5c 69 74 | 65 6d 20 53 6f 6c 76 65 |x$...\it|em Solve|
|00001a60| 20 74 68 69 73 20 65 71 | 75 61 74 69 6f 6e 20 75 | this eq|uation u|
|00001a70| 73 69 6e 67 20 5c 54 74 | 7b 4e 53 6f 6c 76 65 7d |sing \Tt|{NSolve}|
|00001a80| 20 61 6e 64 20 64 65 63 | 69 64 65 20 77 68 69 63 | and dec|ide whic|
|00001a90| 68 20 72 6f 6f 74 73 20 | 6d 61 6b 65 20 70 68 79 |h roots |make phy|
|00001aa0| 73 69 63 61 6c 20 73 65 | 6e 73 65 2e 0a 09 5c 65 |sical se|nse...\e|
|00001ab0| 6e 64 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 0a 5c |nd{enume|rate}..\|
|00001ac0| 69 74 65 6d 20 5c 54 74 | 7b 4e 53 6f 6c 76 65 7d |item \Tt|{NSolve}|
|00001ad0| 20 77 6f 6e 27 74 20 77 | 6f 72 6b 20 20 6f 6e 20 | won't w|ork on |
|00001ae0| 6d 6f 73 74 20 6e 6f 6e | 2d 70 6f 6c 79 6e 6f 6d |most non|-polynom|
|00001af0| 69 61 6c 20 65 71 75 61 | 74 69 6f 6e 73 2c 20 66 |ial equa|tions, f|
|00001b00| 6f 72 20 65 78 61 6d 70 | 6c 65 2c 20 69 74 20 66 |or examp|le, it f|
|00001b10| 61 69 6c 73 20 6f 6e 20 | 6f 75 72 20 6f 6c 64 20 |ails on |our old |
|00001b20| 66 72 69 65 6e 64 20 74 | 68 65 20 60 60 61 73 74 |friend t|he ``ast|
|00001b30| 65 72 6f 69 64 27 27 20 | 65 71 75 61 74 69 6f 6e |eroid'' |equation|
|00001b40| 3a 0a 5c 62 65 67 69 6e | 7b 76 65 72 62 61 74 69 |:.\begin|{verbati|
|00001b50| 6d 7d 0a 65 71 75 61 74 | 69 6f 6e 20 3d 20 43 6f |m}.equat|ion = Co|
|00001b60| 73 5b 31 30 30 30 2f 72 | 5d 20 3d 3d 20 72 2f 28 |s[1000/r|] == r/(|
|00001b70| 72 20 2b 20 31 30 29 3b | 0a 4e 53 6f 6c 76 65 5b |r + 10);|.NSolve[|
|00001b80| 65 71 75 61 74 69 6f 6e | 2c 20 72 5d 0a 20 20 20 |equation|, r]. |
|00001b90| 20 53 6f 6c 76 65 3a 3a | 69 66 75 6e 3a 20 0a 20 | Solve::|ifun: . |
|00001ba0| 20 20 20 20 20 20 57 61 | 72 6e 69 6e 67 3a 20 49 | Wa|rning: I|
|00001bb0| 6e 76 65 72 73 65 20 66 | 75 6e 63 74 69 6f 6e 73 |nverse f|unctions|
|00001bc0| 20 61 72 65 20 62 65 69 | 6e 67 20 75 73 65 64 20 | are bei|ng used |
|00001bd0| 62 79 20 53 6f 6c 76 65 | 2c 20 73 6f 0a 20 20 20 |by Solve|, so. |
|00001be0| 20 20 20 20 20 20 73 6f | 6d 65 20 73 6f 6c 75 74 | so|me solut|
|00001bf0| 69 6f 6e 73 20 6d 61 79 | 20 6e 6f 74 20 62 65 20 |ions may| not be |
|00001c00| 66 6f 75 6e 64 2e 0a 20 | 20 20 20 20 53 6f 6c 76 |found.. | Solv|
|00001c10| 65 3a 3a 74 64 65 70 3a | 20 0a 20 20 20 20 20 20 |e::tdep:| . |
|00001c20| 20 54 68 65 20 65 71 75 | 61 74 69 6f 6e 73 20 61 | The equ|ations a|
|00001c30| 70 70 65 61 72 20 74 6f | 20 69 6e 76 6f 6c 76 65 |ppear to| involve|
|00001c40| 20 74 72 61 6e 73 63 65 | 6e 64 65 6e 74 61 6c 0a | transce|ndental.|
|00001c50| 20 20 20 20 20 20 20 20 | 20 66 75 6e 63 74 69 6f | | functio|
|00001c60| 6e 73 20 6f 66 20 74 68 | 65 20 76 61 72 69 61 62 |ns of th|e variab|
|00001c70| 6c 65 73 20 69 6e 20 61 | 6e 20 65 73 73 65 6e 74 |les in a|n essent|
|00001c80| 69 61 6c 6c 79 0a 20 20 | 20 20 20 20 20 20 20 6e |ially. | n|
|00001c90| 6f 6e 2d 61 6c 67 65 62 | 72 61 69 63 20 77 61 79 |on-algeb|raic way|
|00001ca0| 2e 0a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001cb0| 31 30 30 30 20 20 20 20 | 20 20 20 72 0a 20 20 20 |1000 | r. |
|00001cc0| 20 4e 53 6f 6c 76 65 5b | 43 6f 73 5b 2d 2d 2d 2d | NSolve[|Cos[----|
|00001cd0| 5d 20 3d 3d 20 2d 2d 2d | 2d 2d 2d 2c 20 72 5d 0a |] == ---|---, r].|
|00001ce0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cf0| 72 20 20 20 20 20 20 20 | 31 30 20 2b 20 72 0a 5c |r |10 + r.\|
|00001d00| 65 6e 64 7b 76 65 72 62 | 61 74 69 6d 7d 0a 41 6c |end{verb|atim}.Al|
|00001d10| 6c 20 74 68 6f 73 65 20 | 6d 65 73 73 61 67 65 73 |l those |messages|
|00001d20| 20 61 72 65 20 5c 54 74 | 7b 4e 53 6f 6c 76 65 7d | are \Tt|{NSolve}|
|00001d30| 27 73 20 77 61 79 20 6f | 66 20 73 61 79 69 6e 67 |'s way o|f saying|
|00001d40| 20 69 74 20 63 61 6e 27 | 74 20 73 6f 6c 76 65 20 | it can'|t solve |
|00001d50| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 2e 20 20 20 |the equa|tion. |
|00001d60| 49 6e 20 74 68 69 73 20 | 63 61 73 65 2c 20 79 6f |In this |case, yo|
|00001d70| 75 20 6d 75 73 74 20 75 | 73 65 20 5c 54 74 7b 46 |u must u|se \Tt{F|
|00001d80| 69 6e 64 52 6f 6f 74 7d | 2e 20 20 5c 54 74 7b 46 |indRoot}|. \Tt{F|
|00001d90| 69 6e 64 52 6f 6f 74 7d | 20 72 65 71 75 69 72 65 |indRoot}| require|
|00001da0| 73 20 61 64 64 69 74 69 | 6f 6e 61 6c 20 69 6e 66 |s additi|onal inf|
|00001db0| 6f 72 6d 61 74 69 6f 6e | 2d 2d 2d 61 74 20 74 68 |ormation|---at th|
|00001dc0| 65 20 6d 69 6e 69 6d 75 | 6d 20 61 20 73 74 61 72 |e minimu|m a star|
|00001dd0| 74 69 6e 67 20 67 75 65 | 73 73 20 28 61 73 20 64 |ting gue|ss (as d|
|00001de0| 6f 65 73 20 4e 65 77 74 | 6f 6e 27 73 20 6d 65 74 |oes Newt|on's met|
|00001df0| 68 6f 64 29 2e 20 20 20 | 42 79 20 70 72 65 76 69 |hod). |By previ|
|00001e00| 6f 75 73 20 74 72 69 61 | 6c 20 61 6e 64 20 65 72 |ous tria|l and er|
|00001e10| 72 6f 72 2c 20 77 65 20 | 6b 6e 6f 77 20 74 68 65 |ror, we |know the|
|00001e20| 72 65 27 73 20 61 20 72 | 6f 6f 74 20 6e 65 61 72 |re's a r|oot near|
|00001e30| 20 35 30 2c 30 30 30 2c | 20 73 6f 3a 0a 5c 62 65 | 50,000,| so:.\be|
|00001e40| 67 69 6e 7b 76 65 72 62 | 61 74 69 6d 7d 0a 6c 68 |gin{verb|atim}.lh|
|00001e50| 73 20 3d 20 43 6f 73 5b | 31 30 30 30 2f 72 5d 20 |s = Cos[|1000/r] |
|00001e60| 2d 20 72 2f 28 72 20 2b | 20 31 30 29 3b 0a 46 69 |- r/(r +| 10);.Fi|
|00001e70| 6e 64 52 6f 6f 74 5b 6c | 68 73 20 3d 3d 20 30 2c |ndRoot[l|hs == 0,|
|00001e80| 20 7b 72 2c 20 35 30 30 | 30 30 7d 5d 0a 20 20 20 | {r, 500|00}]. |
|00001e90| 20 7b 72 20 2d 3e 20 35 | 30 30 30 38 2e 33 7d 0a | {r -> 5|0008.3}.|
|00001ea0| 0a 73 6f 6c 75 74 69 6f | 6e 20 3d 20 4e 5b 20 46 |.solutio|n = N[ F|
|00001eb0| 69 6e 64 52 6f 6f 74 5b | 6c 68 73 2c 20 7b 72 2c |indRoot[|lhs, {r,|
|00001ec0| 20 35 30 30 30 30 7d 5d | 2c 20 31 36 5d 0a 20 20 | 50000}]|, 16]. |
|00001ed0| 20 20 7b 72 20 2d 3e 20 | 35 30 30 30 38 2e 33 32 | {r -> |50008.32|
|00001ee0| 39 31 33 35 38 34 30 33 | 35 7d 0a 20 20 20 20 0a |91358403|5}. .|
|00001ef0| 6c 68 73 20 2f 2e 20 73 | 6f 6c 75 74 69 6f 6e 0a |lhs /. s|olution.|
|00001f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 2d | | -|
|00001f10| 31 31 0a 20 20 20 20 2d | 31 2e 31 30 39 38 36 20 |11. -|1.10986 |
|00001f20| 31 30 0a 5c 65 6e 64 7b | 76 65 72 62 61 74 69 6d |10.\end{|verbatim|
|00001f30| 7d 0a 4e 6f 74 69 63 65 | 20 74 68 65 20 74 65 63 |}.Notice| the tec|
|00001f40| 68 6e 69 71 75 65 73 20 | 66 6f 72 20 70 72 69 6e |hniques |for prin|
|00001f50| 74 69 6e 67 20 6d 6f 72 | 65 20 64 65 63 69 6d 61 |ting mor|e decima|
|00001f60| 6c 20 70 6c 61 63 65 73 | 20 61 6e 64 20 66 6f 72 |l places| and for|
|00001f70| 20 63 68 65 63 6b 69 6e | 67 20 74 68 65 20 61 63 | checkin|g the ac|
|00001f80| 63 75 72 61 63 79 20 6f | 66 20 74 68 65 20 73 6f |curacy o|f the so|
|00001f90| 6c 75 74 69 6f 6e 2e 20 | 20 41 6c 73 6f 20 6f 62 |lution. | Also ob|
|00001fa0| 73 65 72 76 65 20 74 68 | 61 74 20 69 74 20 69 73 |serve th|at it is|
|00001fb0| 20 73 74 69 6c 6c 20 61 | 6e 20 6f 70 65 6e 20 71 | still a|n open q|
|00001fc0| 75 65 73 74 69 6f 6e 20 | 6f 66 20 68 6f 77 20 74 |uestion |of how t|
|00001fd0| 6f 20 67 65 74 20 74 68 | 61 74 20 73 74 61 72 74 |o get th|at start|
|00001fe0| 69 6e 67 20 76 61 6c 75 | 65 20 77 69 74 68 6f 75 |ing valu|e withou|
|00001ff0| 74 20 74 72 69 61 6c 20 | 61 6e 64 20 65 72 72 6f |t trial |and erro|
|00002000| 72 2d 2d 2d 74 68 65 20 | 6e 65 78 74 20 43 68 61 |r---the |next Cha|
|00002010| 70 74 65 72 20 77 69 6c | 6c 20 67 69 76 65 20 75 |pter wil|l give u|
|00002020| 73 20 61 20 74 65 63 68 | 6e 69 71 75 65 20 66 6f |s a tech|nique fo|
|00002030| 72 20 64 6f 69 6e 67 20 | 74 68 61 74 2e 0a 25 20 |r doing |that..% |
|00002040| 46 69 6e 64 52 6f 6f 74 | 20 2d 2d 20 61 73 74 65 |FindRoot| -- aste|
|00002050| 72 6f 69 64 20 70 72 6f | 62 6c 65 6d 2c 20 74 61 |roid pro|blem, ta|
|00002060| 6e 20 70 72 6f 62 6c 65 | 6d 0a 0a 5c 62 65 67 69 |n proble|m..\begi|
|00002070| 6e 7b 65 6e 75 6d 65 72 | 61 74 65 7d 0a 5c 69 74 |n{enumer|ate}.\it|
|00002080| 65 6d 20 5c 54 74 7b 50 | 6c 6f 74 7d 20 24 5c 74 |em \Tt{P|lot} $\t|
|00002090| 61 6e 20 78 20 2d 20 78 | 24 20 6f 6e 20 24 5b 30 |an x - x|$ on $[0|
|000020a0| 2c 20 34 20 5c 70 69 5d | 24 20 74 6f 20 67 65 74 |, 4 \pi]|$ to get|
|000020b0| 20 63 72 75 64 65 20 76 | 61 6c 75 65 73 20 66 6f | crude v|alues fo|
|000020c0| 72 20 74 68 65 20 70 6f | 73 69 74 69 76 65 20 72 |r the po|sitive r|
|000020d0| 6f 6f 74 73 20 6e 65 61 | 72 20 74 68 65 20 6f 72 |oots nea|r the or|
|000020e0| 69 67 69 6e 2e 0a 5c 69 | 74 65 6d 20 55 73 65 20 |igin..\i|tem Use |
|000020f0| 5c 54 74 7b 46 69 6e 64 | 52 6f 6f 74 7d 20 74 6f |\Tt{Find|Root} to|
|00002100| 20 67 65 74 20 61 63 63 | 75 72 61 74 65 20 76 61 | get acc|urate va|
|00002110| 6c 75 65 73 20 66 6f 72 | 20 74 68 65 20 66 69 72 |lues for| the fir|
|00002120| 73 74 20 34 20 70 6f 73 | 69 74 69 76 65 20 72 6f |st 4 pos|itive ro|
|00002130| 6f 74 73 20 6f 66 20 74 | 68 65 20 65 71 75 61 74 |ots of t|he equat|
|00002140| 69 6f 6e 20 24 5c 74 61 | 6e 20 78 20 2b 20 78 20 |ion $\ta|n x + x |
|00002150| 3d 20 30 24 20 61 6e 64 | 20 63 68 65 63 6b 20 74 |= 0$ and| check t|
|00002160| 68 65 20 61 63 63 75 72 | 61 63 79 20 6f 66 20 79 |he accur|acy of y|
|00002170| 6f 75 72 20 73 6f 6c 75 | 74 69 6f 6e 73 2e 0a 5c |our solu|tions..\|
|00002180| 65 6e 64 7b 65 6e 75 6d | 65 72 61 74 65 7d 0a 0a |end{enum|erate}..|
|00002190| 25 20 4c 6f 67 69 73 74 | 69 63 20 67 72 6f 77 74 |% Logist|ic growt|
|000021a0| 68 0a 5c 65 6e 64 7b 65 | 6e 75 6d 65 72 61 74 65 |h.\end{e|numerate|
|000021b0| 7d 0a 5c 65 6e 64 7b 64 | 6f 63 75 6d 65 6e 74 7d |}.\end{d|ocument}|
|000021c0| 0a | |. | |
+--------+-------------------------+-------------------------+--------+--------+